Notebook Gallery

Links to the best IPython and Jupyter Notebooks.

Loading web page ...

In this script I am creating the advanced and latest model named CapsNet for the MNIST digits dataset. The model ...

In this script I am creating the advanced and latest model named CapsNet for the MNIST digits dataset. The model ...

define the placeholders for the TensorFlow Computation graph:

Chasing Data: An Exploratory Data Analysis of Mass Shootings in The United States created by Chase Kregor

Chasing Data: An Exploratory Data Analysis of Mass Shootings in The United States created by Chase Kregor

Python Machine Learning - Code Examples

Python Machine Learning - Code Examples

https://github.com/rasbt/python-machine-learning-book

70's A-Z

70's A-Z

So, of course, I'm going to try it again.

Working with Text Data

Working with Text Data

This website does not host notebooks, it only renders notebooks available on other websites.

TFGAN Tutorial

TFGAN Tutorial

Please note that running on GPU will significantly speed up the training steps, but is not required.

This website does not host notebooks, it only renders notebooks available on other websites.

This website does not host notebooks, it only renders notebooks available on other websites.

Delivered by Fastly , Rendered by Rackspace

Scientific Python: Transitioning from MATLAB to Python

Scientific Python: Transitioning from MATLAB to Python

Part of the introductory series to using Python for Vision Research brought to you by the GestaltReVision group (KU Leuven, Belgium).

A Working Knowledge of Machine Learning

A Working Knowledge of Machine Learning

Delivered by Fastly , Rendered by Rackspace

This website does not host notebooks, it only renders notebooks available on other websites.

This website does not host notebooks, it only renders notebooks available on other websites.

Delivered by Fastly , Rendered by Rackspace

Selecting Subsets of Data in Pandas

Selecting Subsets of Data in Pandas

When you see the word assign used during a discussion on programming, it usually means that a variable is set equal to some value. For most programming languages, this means using the equal sign. For instance, to assign the value ...

Face to Face

Face to Face

For the purposes of this notebook, a face embedding is a representation of a face that allows us to compute how different or similar it is to another face. These embeddings are produced from a cropped photograph of a face ...

This website does not host notebooks, it only renders notebooks available on other websites.

This website does not host notebooks, it only renders notebooks available on other websites.

Delivered by Fastly , Rendered by Rackspace

波数表示でのシュレーディンガー方程式

波数表示でのシュレーディンガー方程式

これまで考えてきた、両側に壁がある場合を波数表示で解いてみよう。 境界条件は、 $$ \psi(x=0) = 0 $$ $$ \psi(x=L)=0 $$ である。 解を $$ \psi(x) = \frac{1}{2\pi}\int dk \exp(ikx)c_k $$ と置く。 このとき、 $$ \frac{1}{2\pi}\int dk c_k = 0 $$ $$ \frac{1}{2\pi}\int dk \exp(ikL)c_k=0 $$ が境界条件となる。しかし、これらの境界条件をみたすように解を決めるのは難しい。なぜなら、それぞれの固有値に対応する固有関数ごとに、これらの境界条件を満たさなければならないからである。もし、あらかじめ一般解が求められている場合、一般解を得たあとに境界条件によって係数$c_k$を決めることができる。例えば、ポテンシャルがゼロの場合、一般解は $$ \psi_n(x) = C_1 e^{ikx}+C_2 e^{-ikx} ...

The logistic map

The logistic map

$$x_{i+1} = \mu\ x_i\ (1-x_i)$$

Luke Lawn, Oriana McDonough & Ryan Pike (Group 14)

Luke Lawn, Oriana McDonough & Ryan Pike (Group 14)

Project Overview: Our project will take the top listened artists from a user’s Spotify account and return concerts and venues where that artist is scheduled to perform. This will save people time and allow them to easily see the artists ...

Tutorial on Poincaré Embeddings

Tutorial on Poincaré Embeddings

Poincaré embeddings are a method to learn vector representations of nodes in a graph. The input data is of the form of a list of relations (edges) between nodes, and the model tries to learn representations such that the vectors ...

Introduction to Survival Analysis with scikit-survival

Introduction to Survival Analysis with scikit-survival

The objective in survival analysis — also referred to as reliability analysis in engineering — is to establish a connection between covariates and the time of an event. The name survival analysis originates from clinical research, where predicting the time ...

Regression Week 1: Simple Linear Regression

Regression Week 1: Simple Linear Regression

In this notebook you will be provided with some already complete code as well as some code that you should complete yourself in order to answer quiz questions. The code we provide to complte is optional and is there to ...

Organize Data

Organize Data

features = platform, genre, and publisher

Juliaで学ぶ量子力学

Juliaで学ぶ量子力学

一次元系のシュレーディンガー方程式は、 $$ \left( -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right) \psi(x) = \epsilon \psi(x) $$ と書ける。この方程式は二階微分方程式なので、一般解には二つの未定定数が含まれ、それらの定数を決定するためには、この方程式の他に二つの方程式が必要となる。

This notebook is used for visualize a neural network with Matplotlib.

This notebook is used for visualize a neural network with Matplotlib.

This website does not host notebooks, it only renders notebooks available on other websites.

ポテンシャルがある場合の1Dシュレーディンガー方程式の解

ポテンシャルがある場合の1Dシュレーディンガー方程式の解

座標を離散化すると、シュレーディンガー方程式は、 $$ \sum_j \left( -\frac{\hbar^2}{2m} d_j + V(x_j) \delta_{ij} \right) \psi(x_j) = \epsilon \psi(x_i) $$ と書くことができる。 ここで、 $$ \frac{d^2}{dx^2}\psi |_{x=x_i} \rightarrow \sum_j d_j \psi(x_j) $$ である。 この方程式は、先ほどと同様に行列とベクトルで表現することができて、 $$ \hat{H} {\bf \psi} = \epsilon {\bf \psi} $$ となる。これがシュレーディンガー方程式の行列表示である。 ここで、${\bf \psi}_n = ...

Tutorial on Poincaré Embeddings

Tutorial on Poincaré Embeddings

Poincaré embeddings are a method to learn vector representations of nodes in a graph. The input data is of the form of a list of relations (edges) between nodes, and the model tries to learn representations such that the vectors ...

Analyzing Browser History Using Python and Pandas

Analyzing Browser History Using Python and Pandas

This website does not host notebooks, it only renders notebooks available on other websites.

Juliaで学ぶ量子力学

Juliaで学ぶ量子力学

一次元系のシュレーディンガー方程式は、 $$ \left( -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x) \right) \psi(x) = \epsilon \psi(x) $$ と書ける。この方程式は二階微分方程式なので、一般解には二つの未定定数が含まれ、それらの定数を決定するためには、この方程式の他に二つの方程式が必要となる。

This website does not host notebooks, it only renders notebooks available on other websites.

This website does not host notebooks, it only renders notebooks available on other websites.

Delivered by Fastly , Rendered by Rackspace

Would anyone like to get a planet from Santa this year?

Would anyone like to get a planet from Santa this year?

A Gentle Introduction to Transfer Learning

A Gentle Introduction to Transfer Learning

Transfer learning with Simpsons dataset

確率ロボティクス2017第13回

確率ロボティクス2017第13回

2017年12月6日@千葉工業大学